为了实现绿茶杀青过程中水分含量的快速有效检测,利用机器视觉结合近红外光谱技术,构建绿茶杀青过程中水分含量变化的定量预测模型。首先采集杀青过程中在制品的光谱和图像信息,然后采用竞争性自适应权重取样(competitive adaptive reweighted sampling,CARS)法、变量组合集群分析(variables combination population analysis,VCPA)法、变量组合集群分析法结合迭代保留信息变量(variable combination population analysis and iteratively retains informative variables,VCPA-IRIV)法和随机蛙跳法(random frog,RF)4 种变量筛选方法提取光谱中的特征波长,并融合图像中的15 个色泽和纹理特征建立线性偏最小二乘回归(partial least squares regression,PLSR)和非线性支持向量回归(support vector regression,SVR)预测模型。结果表明,与单一数据相比,基于融合数据所建立的模型能有效提高预测精度,其中基于CARS算法提取光谱特征波长融合图像的15 个颜色特征,并结合归一化预处理和主成分分析(principal component analysis,PCA)建立的SVR模型效果最佳,其中校正集相关系数为0.974 2,预测集相关系数为0.971 9,相对分析误差(relative percent deviation,RPD)为4.154 6,表明模型具有极好的预测性能。综上,本研究证明融合光谱和图像技术对绿茶杀青过程中水分含量预测的可行性,克服了单一传感器预测精度低的问题,为实现绿茶杀青叶水分含量的快速无损检测和精准把控杀青质量提供理论基础。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2