融合可见-近红外光谱和机器视觉分析技术,建立玉米霉变程度在线检测方法。辐照灭菌玉米分别接种5 种谷物中常见有害霉菌,并于28 ℃和85%相对湿度环境中储藏15 d至严重霉变。在样品储藏的第0、6、9、12、15天,同时在线采集其光谱及图像特征信息,将提取的样品光谱特征波长和图像颜色特征参数融合成总特征参数,建立玉米霉变程度定性定量模型。结果表明,主成分分析可成功区分不同霉变程度的玉米样品;基于光谱和图像信息融合的线性判别分析模型对不同霉变程度玉米样品的整体识别率达91.1%,比单独应用光谱和图像时的准确率分别提高4.4%和8.9%;基于信息融合的玉米菌落总数偏最小二乘回归模型结果也同样较优,模型预测决定系数Rp2为0.894 1,均方根预测误差为0.665(lg(CFU/g)),相对分析偏差达3.06。结果表明光谱和图像数据融合能够提高模型精度,在霉变玉米在线检测方面具有可行性。下一步应不断扩大样品量,补充自然霉变及受更多代表性霉菌侵染的玉米样品,以不断增强模型的鲁棒性和适用性。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2