利用高效液相色谱法检测蔗糖含量,同时运用高光谱成像技术结合化学计量方法建立蔗糖预测模型;通过竞争性自适应加权(competitive adaptive reweighted sampling,CARS)算法、连续投影算法(successive projection algorithm,SPA)和无信息消除变量(uninformative variable elimination,UVE)降维处理,建立特征波段和全波段的主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)和多元线性回归(multivariable linear regression,MLR)模型。结果表明,采用蒙特卡洛方法剔除异常样本后,相关系数由0.611增大到0.846;正交信号校正法预处理效果最佳,RC和RP分别为0.853和0.794;利用SPA、UVE、CARS、CARS+SPA和CARS+UVE五种方法提取了5、21、17、10、18 个特征变量,其中CARS-PCR模型最好,校正集、预测集的相关系数为0.861、0.843,校正集、预测集的均方根误差为0.013 mg/g和0.014 mg/g。综上,高光谱成像技术可以实现长枣蔗糖含量的预测,为更深一步探讨枣的内部品质提供参考。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2