探讨傅里叶变换近红外光谱技术和电子鼻技术应用于苹果水心病检测的可行性。以277?个“秦冠”水心病苹果和健康苹果为试材,分别采集每个样本在12?000~4?000?cm-1波数范围的近红外光谱和10?个传感器的电子鼻信号,用不同预处理的近红外光谱方法提取主成分建立Fisher判别模型;同时电子鼻结合3?种化学计量学的方法进行建模。结果表明,经一阶导数(9?点平滑)预处理的近红外光谱,提取前20?个主成分建立的Fisher判别模型效果最好,对未知样本的正确判别率达100%;电子鼻分别结合Fisher判别、多层感知器神经网络和径向基函数神经网络判别模型对未知样本的识别率为89.7%、89.5%和85.7%。故利用近红外光谱和电子鼻技术分别结合化学计量学的方法可快速、无损检测苹果的水心病。其中,近红外光谱技术结合Fisher判别对苹果水心病的识别率最高,是一种准确可靠的测定方法。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2