利用近红外光谱协同BP神经网络算法,对泰国茉莉香米及其掺伪样品的近红外光谱进行多元散射校正预处理,挑选出48 个特征波长;以特征波长的吸光度为BP神经网络输入层神经元,以样品中泰国茉莉香米的含量为输出层神经元,获得BP神经网络算法的最优结构模型,即为单层隐含层、隐含层神经元数7、隐含层传递函数logsig、输出层传递函数tansig、训练函数trainlm、网络学习函数learngdm和学习速率0.35。所建立模型的均方根误差、校正集相关系数、验证集相关系数、测试集相关系数分别为0.000 830、0.992 9、0.976 1和0.975 5,呈现出优良的预测效果,实现了泰国茉莉香米掺伪含量的快速鉴定。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2