领学术科研之先,创食品科技之新
—— 中国食品杂志社
期刊集群
基于高光谱和超声成像技术的原切与合成调理牛排鉴别
来源:食品科学网 阅读量: 155 发表时间: 2021-07-13
作者: 孙宗保,王天真,邹小波,刘源,梁黎明,李君奎,刘小裕
关键词: 超声成像技术;高光谱成像技术;调理牛排;数据融合
摘要:

针对市场上存在合成调理牛排冒充原切售卖的现象,研究利用高光谱和超声成像技术对它们进行鉴别的方法。分别采集原切与合成调理牛排的高光谱和超声图像信息,利用灰度共生矩阵法提取图像的纹理特征值,分别建立线性判别分析、K最邻近(K-nearest neighbor,KNN)、反向传播人工神经网络和极限学习机(extreme learning machine,ELM)4 种鉴别模型,而后将2 种技术数据融合建模,并采用连续投影法、竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、变量组合集群分析(variables combination population analysis,VCPA)法3 种方法筛选特征变量建模。结果表明:合成调理牛排的肉块组织均匀,超声图像信号弱、均一性好,与原切调理牛排图像存在差异。高光谱和超声成像技术的最佳模型分别为KNN和ELM,模型预测集识别率分别为95.00%和90.00%。数据融合后建模,最佳模型ELM模型预测集识别率模型为97.50%,在3 种变量选择方法中,CARS和VCPA选择的纹理变量建立的模型预测集识别率达到100.00%。研究表明高光谱和超声成像数据融合结合变量选择方法可以快速准确地鉴别原切和合成调理牛排。

电话: 010-87293157 地址: 北京市丰台区洋桥70号

版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2