领学术科研之先,创食品科技之新
—— 中国食品杂志社
期刊集群
基于监督抽检数据的肉类食品安全风险分析及预测
来源:食品科学网 阅读量: 118 发表时间: 2019-09-26
作者: 李笑曼,臧明伍,赵洪静,王守伟,李 丹,张凯华,张哲奇
关键词: 食品安全|抽检数据|BP神经网络|预测模型|肉及肉制品
摘要:

为通过数据挖掘预测食品安全风险、隐患和趋势,进行预警和快速反应,基于2015—2017年国家肉类食品监督抽检的18 378 批次样品数据,分析我国肉与肉制品主要安全现状与风险种类,并基于检测指标及属性运用BP(back propagation)神经网络方法构建以抽样省份、产品类型、产地、生产日期、年份、是否大型企业6大属性指标为输入层、包含2 个隐藏层、以是否合格为输出层的肉类食品安全神经网络预测模型。结果表明:经数据准备、模型生成、数据训练和验证及参数优化,得到的3 层BP神经网络预警模型总体百分比矫正为96.2%;对于合格样本,判定正确的概率为96.5%,错判概率为3.5%,预测模型具有较好的参考和应用价值。基于BP神经网络的食品安全预警方法能够对输入样本进行有效预测,为食品安全风险研判和风险预警提供技术支撑。

电话: 010-87293157 地址: 北京市丰台区洋桥70号

版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2