领学术科研之先,创食品科技之新
—— 中国食品杂志社
期刊集群
二维相关光谱图像结合深度学习用于皮蛋成熟度的高光谱无损检测
来源:导入 阅读量: 117 发表时间: 2024-02-20
作者: 陈远哲, 王巧华, 范维, 刘世伟, 林卫国
关键词: 皮蛋;二维相关光谱;高光谱技术;深度学习
摘要:

利用高光谱成像技术对腌制期不同成熟度皮蛋进行无损检测。首先,在时间序列下基于一维光谱和二维相关光谱法分别确定最优波段研究区域;进而,对比传统机器学习和改进后的ResNet20_SE模型在最优波段的模型效果,发现改进后的ResNet20_SE模型最优,对同步光谱数据集的整体识别准确率可以达到97.29%,且单张图像平均检测时间为24.62 ms;最后,采用较优的同步光谱集ResNet20_SE模型应用于高光谱图像中,计算每个像素点的数值,并辅以伪彩色技术实现腌制期皮蛋成熟度的空间分布可视化检测。结果表明,高光谱成像技术结合深度学习可以实现皮蛋腌制期成熟度的无损检测,能为后期皮蛋成熟度的高通量在线分选奠定技术基础。

电话: 010-87293157 地址: 北京市丰台区洋桥70号

版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2