应用高光谱技术研究和构建霉变玉米黄曲霉毒素B1(aflatoxin B1,AFB1)和玉米赤霉烯酮(zearalenone,ZEN)含量的检测方法,通过建立霉变玉米中这2?种毒素含量的预测模型,实现对玉米霉变程度的快速、无损、准确判别。首先,通过对比5?种预处理方法,确定标准正态变量校正法对原始光谱数据进行预处理;然后,采用光谱-理化值共生距离算法结合偏最小二乘回归(partial least squares regression,PLSR)法分析不同校正集样本预测AFB1和ZEN含量的差异,并分别优选出130?个和140?个校正集样本;在采用均匀光谱间隔法对原始光谱变量进行初降维的基础上,对比连续投影算法(successive projections algorithm,SPA)和竞争性自适应重加权算法2?种变量提取法。结果表明:经SPA分别筛选出17?个特征波段且基于较少校正集样本和特征波长光谱信息建立的PLSR模型能够获得较优的预测结果,对应AFB1和ZEN含量预测集的相关系数和均方根误差(root mean square error of prediction,RMSEP)(R2pre,RMSEP)由最初的(0.994?4,0.984?6)和(0.991?6,2.320?9)分别变为(0.997?3,0.681?5)和(0.997?7,1.144?1),在降低模型复杂度的情况下提高了预测精度,表明该模型对这2?种毒素含量能够实现较强的预测能力。因此,利用高光谱技术对玉米AFB1和ZEN含量实施无损检测具有可行性。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2