利用高光谱技术对储藏大米的水分含量进行检测。本实验以120 个大米样本为研究对象,采集所有大米样 本的高光谱图像,利用多元散射校正的预处理方法对大米样本原始光谱数据进行降噪处理。由于原始高光谱数据 量大且冗余性强,故利用逐步线性回归分析方法对预处理后的数据进行特征提取。最后建立BP神经网络的大米水 分定量检测模型,由于建模效果没有达到预期目标,因此引入遗传算法(genetic algorithm,GA)和思维进化算法 (mind evolutionary algorithm,MEA)优化BP神经网络的权值和阈值。对BP、GA-BP、MEA-BP 3 种大米水分预测 模型进行比较,3 种模型的预测集决定系数都达到0.86以上,其中MEA-BP模型具有最佳的预测效果,预测集决定 系数达到0.966 3,且均方根误差为0.81%。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2