为建立一种快速无损检测禽蛋裂纹的方法,构建了基于磁致伸缩振子扫频式振动的禽蛋裂纹检测系统。系统以声学特性为基础,通过利用Welch法功率谱分析禽蛋振动音频信号,利用主成分分析法提取特征向量中的有用信息并构建基于广义回归神经网络(generalized regression neural network,GRNN)的禽蛋裂纹检测模型。实验对290 枚鸡蛋进行检测(训练集200 枚,测试集90 枚)。结果表明,测试集中无损蛋与裂纹蛋的判别率分别达到96.7%和98.3%。研究表明,利用磁致伸缩振子扫频和Welch法功率谱分析,通过主成分分析法提取特征向量中的有用信息并结合GRNN模型检测禽蛋裂纹是可行的。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2