为优选小麦粉蛋白质近红外光谱特征波长,结合指数和线性衰减函数对单群蜻蜓算法(single-binary dragonfly algorithm,single-BDA)进行改进并提出一种衰减消去蜻蜓算法(attenuation elimination-BDA,AE-BDA)。分别使用single-BDA和AE-BDA筛选160 个小麦粉样本中蛋白质近红外光谱的波长,并用偏最小二乘回归法建立蛋白质定量分析模型评价波长选择效果。结果表明:与single-BDA相比,AE-BDA所选波长数量少、稳定性强,建立的模型预测效果最佳,模型最佳的预测决定系数为0.972 7,预测标准偏差为0.281 1。8 次AE-BDA实验挑选出特征波长的平均数量为15.8 个,占原始波长数的12.6%,其中有3 个波长每次均被选中。经近红外光谱解析,各入选的波长均包含在小麦粉蛋白质及背景组分的主要吸收谱带范围内。AE-BDA能够以较高的计算效率从小麦粉近红外光谱中筛选出较少的特征波长建立蛋白质分析模型,提高了模型的预测精度和稳定性,可为近红外分析建模提供一种更加简便有效的波长优选方法。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2