近些年粮食供应链安全问题频发,为减少食源性风险威胁,风险预警正逐渐成为强化粮食食品安全体系的有力保障。但现有风险预警方法在面对多源异构非结构化食品数据时,存在预警准确率低、人工成本高等局限问题。本文在分析全国26 个省份的大量抽检数据及关联信息基础上,建立了基于深度置信网络(deep belief network,DBN)-多类模糊支持向量机(multiclass fuzzy support vector machine,MFSVM)的风险分级预警模型,先对海量粮食供应链抽检数据进行嵌入编码和归一化处理,获得结构化食品数据;将其输入到DBN模型进行高维度特征提取,自适应地挖掘供应链中各危害因素间风险变化及内在关联概率,最后将高维特征输入到优化的MFSVM进行训练,实现供应链中各主要危害物风险分级预警。对比实验结果表明,DBN-MFSVM模型在粮食抽检数据上具有更好鲁棒性和泛化性,其准确率达到98.44%,运行时间85 s,可快速识别出粮食供应链中危害物风险程度和优先次序,为监管部门制定有针对性的抽检策略、确立优先监管领域和分配风险监管资源提供科学依据。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2