为实现对油炸外裹糊鱼块的丙烯酰胺含量的预测,采用响应面试验设计收集数据,建立以黄原胶和大豆纤维复配比例、外裹糊鱼块干燥时间、大豆油品质、油炸温度、油炸时间为输入值,油炸外裹糊鱼块的丙烯酰胺含量为输出值的反向传播人工神经网络(back propagation artificial neural network,BP-ANN),预测外裹糊鱼块深度油炸过程丙烯酰胺含量的变化,并用训练集拟合,测试集评估模型的预测能力。结果显示,黄原胶和大豆纤维复配比例、外裹糊鱼块干燥时间、油炸温度、油炸时间对油炸外裹糊鱼块的丙烯酰胺含量均有显著影响,大豆油品质对油炸外裹糊鱼块中丙烯酰胺含量影响不显著。训练后的BP-ANN模型的相关系数R值为0.997,拟合良好,有很强的逼近能力;模型对新数据预测的误差较小,最大相对误差为5.34%,最小相对误差为0.12%,表明BP-ANN模型能准确预测油炸外裹糊鱼块的丙烯酰胺含量。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2