采用傅里叶变换红外光谱法,对采自云南及秘鲁共139 份玛咖样品进行产地鉴别研究。采用多元散射校正结合二阶导数和Norris平滑预处理光谱,通过剔除噪声明显的光谱波段,筛选出适宜的主成分数为8。基于最优主成分数,采用间隔偏最小二乘(interval partial least-squares,iPLS)法对3 650.59~651.82 cm-1光谱进行优化分析。结果显示,筛选98 份样品在1 855.19~651.822、3 054.69~2 756.78 cm-1和3 650.59~3 353.6 cm-1光谱建立的间隔偏最小二乘判别分析(interval partial least-squares discriminant analysis,iPLS-DA)分类模型,其R2、校正均方根误差和预测均方根误差分别为0.958 4、0.785 8和1.164 2。通过41 份样品验证,验证正确率与原光谱建立的分类模型保持一致,均为87.80%。为进一步提高分类模型的精度,在iPLS筛选的光谱波段基础上,分别采用遗传算法(geneticalgorithm,GA)和蛙跳算法(shuffled frog leaping algorithm,SFLA)对光谱信息进行优化,结果显示,采用GA筛选频率大于4和5的光谱信息,筛选的光谱数据点分别为62 个和29 个;利用SFLA筛选概率大于0.1和0.15的光谱信息,筛选的光谱数据点分别为77 个和27 个。验证结果显示,采用GA-PLS-DA(62 个数据点)和GA-PLS-DA(29 个数据点)建立的PLS-DA分类模型识别正确率分别为95.12%和97.56%,采用SFLA-PLS-DA(77 个数据点)和SFLA-PLS-DA(27 个数据点)建立的分类模型识别正确率分别为92.68%和97.56%。对比上述方法可知,采用iPLS-DA、GA-PLS-DA和SFLA-PLSDA建立的分类模型均具有较好的预测性能,其中GA-PLS-DA(29 个数据点)和SFLA-PLS-DA(27 个数据点)建立分类模型能更准确地鉴别不同产地的玛咖。该方法的建立为玛咖红外光谱产地鉴别提供一种新的思路,所筛选的光谱变量可为不同产地玛咖内在化学成分(组分)差异性分析提供基础依据。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2