为实现明虾中挥发性盐基氮(total volatile basic nitrogen,TVB-N)含量的快速预测,采用近红外光谱和机器视觉技术获取明虾图谱特征信息,融合图谱特征信息构建预测明虾中TVB-N含量的支持向量机模型。获取明虾4 ℃贮藏0~12 d共51 个样品的光谱信息和图像信息,同时参照GB 5009.228—2016《食品中TVB-N的测定》方法测定其TVB-N含量。结果表明,利用350~1 000 nm和940~1 650 nm双波段融合的光谱特征信息,并对其进行一阶导数的预处理,同时采用竞争性自适应加权算法挑选特征波长后建立的模型效果较好,其预测集相关系数(correlation coefficient in the prediction set,Rp)为0.968 7,验证集标准分析误差(standard error of prediction,SEP)为10.56 mg/100 g,相对分析误差(relative percent deviation,RPD)为3.38;利用图像特征信息所构建的模型效果较差,Rp为0.933 5,SEP为19.79 mg/100 g,RPD为1.74。最后,融合特征图谱信息构建TVB-N含量的预测模型,相比其他2 种方法,该模型精度和稳定性都得到了提高,其Rp为0.988 4,SEP为7.51 mg/100 g,RPD为6.29。该结果证实近红外光谱技术结合机器视觉方法预测明虾中TVB-N含量的潜力,为分析评价明虾在冷藏过程中新鲜度的变化规律提供了快速检测技术。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2