为建立快速检测冷冻小龙虾鲜度的近红外光谱模型,采集解冻的小龙虾虾尾、虾仁及虾糜的近红外光谱,分别利用一阶导数、多元散射校正、小波变换(wavelet transform,WT)和标准正态变换进行预处理,并利用偏最小二乘(partial least squares,PLS)与卷积神经网络(convolutional neural network,CNN)算法将预处理前后的光谱数据分别与总挥发性盐基氮(total volatile basic nitrogen,TVB-N)含量关联,构建定量预测模型并比较建模效果,选取较佳模型,探究模型预测准确度和适用性。结果显示,预处理方法明显影响了建立模型的精度,光谱经预处理建立的CNN模型与PLS模型相比,具备更好地预测小龙虾TVB-N含量的能力。其中,虾仁光谱经WT预处理建立的CNN模型对验证集的预测准确度最高,校正集与验证集的相关系数分别为0.97、0.96,校正集与验证集的均方根误差分别为1.26、0.93 mg/100 g。近红外光谱的准确度、精密度与灵敏度均在合理范围内,方法学验证结果良好。综合考虑实际应用中快速、准确、低损伤等需求,确定WT-CNN-虾仁模型为预测冷冻小龙虾中TVB-N含量的最优模型。这些结果表明,WT-CNN-虾仁模型在预测冷冻小龙虾TVB-N含量、快速评价新鲜度方面具有巨大潜力。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2