针对传统的奶粉品质国际标准检测方法中存在的主观性和滞后性等问题,本研究提出了一种基于残差网络(residual network,ResNet)的奶粉分散性和堆积密度的快速分类检测方法。在本研究中,使用的数据集包括499 张在10 倍光学显微镜下拍摄的速溶全脂奶粉颗粒微观分布图像,这些图像来自10 个不同的样本组。首先,按照国际标准方法检测这10 组样本的分散性和堆积密度,进而基于测试结果划分不同的分散性和堆积密度级别。随后,利用这些微观图像对ResNet模型进行训练,以实现对不同样本的有效分类。最终,通过分类结果预测速溶全脂奶粉的分散性、松散密度和振实密度。此外,本研究还对比了ResNet、EfficientNetV2和Swin Transformer等不同深度学习模型的预测效果。结果表明,基于ResNet 152的深度学习模型在预测速溶全脂奶粉的分散性、松散密度和振实密度方面表现最佳,其在测试集上的准确率分别达到97.50%、98.75%和95.00%。这些深度学习模型在奶粉品质检测中的出色性能不仅证明了该方法能够实时、准确地预测奶粉的分散性和堆积密度,同时也为奶粉品质的在线检测提供了新的技术途径。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2