粮食加工过程污染物的准确预测对粮食安全具有重要意义,但由于粮食加工工艺复杂,污染物检测困难导致数据量较小,难以满足建模预测所需,需要研究小样本的污染物数据扩充方法。同时,较小样本量的粮食加工过程污染物数据往往缺乏足够的先验知识,传统监督学习的方法对其预测精度较低,且现有连续型深度学习模型不适于粮食加工过程这一间歇过程,需研究基于无监督学习和离散深度学习的粮食加工过程污染物预测方法。为此,本文针对粮食加工过程污染物提出基于时间生成对抗网络(time generative adversarial networks,TimeGAN)的数据扩充及基于生成对抗网络(generative adversarial networks,GAN)和深度森林(deep forest,DF)结合的预测方法。首先构建TimeGAN模型,对小样本数据学习后得到多组样本数据,实现数据扩充;将无监督学习的GAN模型与适用于离散过程的DF模型结合,构建GAN-DF模型,实现污染物预测;再分别将DF与长短时记忆(long short-term memory,LSTM)-DF模型作为生成器嵌入到GAN,构建DFGAN与LSTM-DFGAN模型,进一步提高污染物预测的准确度。通过稻谷加工过程的金属污染物Pb数据(Pb含量)进行仿真验证,结果表明TimeGAN方法扩充数据可行,LSTM-DFGAN模型的综合预测效果最好,其扩充数据后的预测平均绝对误差和均方根误差低至7.50×10-5 mg/kg和1.60×10-8 mg/kg。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2