为提高菊花特征组分的检测效率,提出一种基于三维荧光光谱(three-dimensional excitation emission matrix spectroscopy,3DEEM)耦合平行因子分析(parallel factor analysis,PARAFAC)的快速鉴别方法。以4 种菊花为研究对象,在分别获取样品3DEEM矩阵(EEMs)后,首先通过数据预处理去除如拉曼散射和瑞利散射等干扰数据,并剔除异常值,分析光谱特征。然后,采用PARAFAC进行特征提取,通过方差解释率和残差分析法,确定菊花两种特征荧光组分为氨基酸和黄酮类化合物。最后利用支持向量机(support vector machines,SVM)和BP神经网络(back propagation neural network,BPNN)对特征变量进行分析,建立菊花快速无损鉴别模型。SVM和BPNN训练集结果分别为100%、95.93%,测试集结果分别为94.50%、89.61%。结果表明,3DEEM-PARAFAC结合SVM可以实现对菊花特征组分的定性定量分析,能够对菊花进行快速鉴别。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2