针对现有霉心病无损检测只能检测出有无病害,无法对病害程度进行判断的问题,研究并提出一种基于深度信念网络(deep belief net,DBN)的无监督检测模型。该模型由多层限制玻尔兹曼机(restricted Boltzmann machine,RBM)网络和1层反向传播(back propagation,BP)神经网络组成,RBM网络实现最优特征向量映射,输出的特征向量由BP神经网络对霉心病病害程度分类。对225 个苹果样本在波长200~1 025 nm获取其透射光谱后,根据腐烂面积占横截面比例将霉心病害程度分为健康、轻度、中度和重度4 种,分别用150 个和75 个样本作为训练集和测试集,以全光谱数据和基于连续投影算法提取的特征波长数据为输入构建病害程度判别模型,并比较DBN模型与偏最小二乘判别分析、BP神经网络和支持向量机模型的识别效果,实验结果表明,DBN模型病害判别准确率达到88.00%,具有较好的识别效果。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2