为了实现小米米粉糊化特征指标的批量、快速检测,探索计算机深度学习结合高光谱成像技术在小米米粉糊化特征指标预测方面的应用方法,本研究运用高光谱数据提取、预处理分步运算程序获得小米米粉平均光谱数据,并以该数据矩阵为基础,运用麻雀搜索算法(sparrow search algorithm,SSA)优化误差反向传播(error back propagation,BP)算法进行待测样品糊化特征指标回归、预测。结果表明,光谱数据预处理程序能够标准化并简化光谱数据提取、预处理过程,该程序在粉末及小颗粒样本光谱数据的提取、预处理过程中具有普遍适用性;运用BP算法及SSA优化BP算法对小米米粉糊化各特征指标进行预测,从预测值与测试值间均方误差(mean squared error,MSE)可以看出,各指标MSE均下降,以峰值黏度(peak viscosity,PV)为例,其MSE从0.026 6降为0.017 5,可知运用SSA优化BP算法能够提高小米米粉糊化特征指标预测精度,降低MSE。本研究结论可以为高光谱成像结合计算机深度学习在小米米粉糊化特性预测方面应用提供理论支撑。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2