近年来,随着社会对食品质量和安全的关注度不断提高,计算机视觉技术在食品质量评价领域逐渐受到重视并开始广泛应用。通过学习技术,如人工神经网络、卷积神经网络和支持向量机等,研究人员能够利用大量的食品图像和相关数据进行训练,从而实现对食品质量的自动评估和监测。特别是深度学习技术的发展,使得计算机能够更加准确地识别食品的外观、形状、颜色等特征,进而对其进行分类、预测和质量检测。除了在食品质量评价中的常规应用,学习技术还被用于更复杂的任务,如食品缺陷检测、异物检测、新鲜度评估等。这些技术不仅可以提高食品生产和加工的效率,还能够减少人为因素带来的误差,从而确保食品质量和安全。然而,尽管学习技术在食品质量评价中的应用取得了显著进展,但仍然存在一些挑战需要克服。例如,食品图像数据集的获取和标注成本较高,数据质量和数量的不足可能会影响模型的性能和泛化能力。此外,模型的可解释性和透明性也是一个重要问题,尤其是在需要对食品质量评价结果做出解释或决策的情况下。因此,未来的研究需要继续探索如何提高数据集的质量和规模、优化模型的鲁棒性和可解释性,以及开发更加高效和可持续的食品质量评价系统。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2