为探究贮藏于不同温度条件下蓝莓的品质变化及货架期,以‘怡颗莓’蓝莓为研究对象,测定其在5、10、15、20、25 ℃条件下的可溶性固形物、质量损失率、腐败率、质地参数等多个品质指标。通过基于二元灰狼优化算法进行特征选择,筛选出7 个影响货架期的关键特征作为模型的输入变量,构建附加斑翠鸟优化算法(pied kingfisher optimizer,PKO)的卷积神经网络(convolutional neural network,CNN)-双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)-注意力机制(attention mechanism,AT)的蓝莓货架期预测模型,利用PKO对CNN-BiLSTM-AT网络进行参数化寻优,主要用以确定最优学习率、正则化参数、Attention键值及BiLSTM神经元数量。结果表明,与CNN-LSTM相比,PKO-CNN-BiLSTM-AT模型的平均绝对误差、平均绝对百分比误差、均方误差和均方根误差分别降低了76.13%、80.96%、92.03%和71.75%,决定系数增加了5.85%。说明引入PKO后的CNN-BiLSTM-AT模型显著提高了货架期的预测性能,本研究可为蓝莓在不同贮藏温度条件下的货架期制定提供理论支持。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2