利用机器视觉和近红外光谱的多源感知信息融合技术评判牛肉新鲜度,并开发了相关的识别系统。以牛后腿肉为研究对象,对获取的图像特征信息和光谱特征信息,采用BP神经网络建立牛肉新鲜度分级模型。其中,通过主成分分析提取相应的主成分因子作为建模输入,根据挥发性盐基氮含量划分新鲜度等级作为模型输出。结果发现,在图像特征信息因子数为6、光谱信息主成分因子数为6时,建立的模型预测识别率可达98.31%。结果表明,基于机器视觉和近红外光谱技术的多源感知信息融合技术评判牛肉新鲜度的方法可行。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2