研究提出基于支持向量机(support vector machine,SVM)算法结合红外衰减全反射光谱对不同种类的面粉进行快速分类。实验随机采集富强粉、精制雪花粉、麦芯粉及面包粉4 种共139 份常见面粉红外衰减全反射光谱,运用马氏距离筛选异常样本,并建立SVM模型对待测样本进行预测。实验采用二叉树SVM模型识别面粉种类,并通过网格法优化核函数参数,结果显示:富强粉、精制雪花粉、麦芯粉及面包粉的识别准确率分别为100%、100%、75%和85.71%,模型平均识别准确率为90.177 5%。结果表明,利用红外光谱结合SVM算法快速识别面粉种类是准确可行的。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2