针对现有含磷量检测方法无法通过实时监测指导调控精炼过程中酸碱的添加量问题,提出一种基于近红外光谱分析的大豆原油含磷量的快速检测方法。对比分析发现标准正态变换法对大豆原油样本含磷量光谱数据的去除噪声效果最优。采用组合区间偏最小二乘法优选出磷脂的最佳特征吸收波段,选用学习效率0.005、训练次数108,建立了大豆原油含磷量的BP神经网络预测模型。模型校正集的决定系数(R2)为0.979 7、均方根误差(root mean square error,RMSE)为0.859 3、相对标准偏差(relative standard deviation,RSD)为1.89%;预测集的R2为0.978 5、RMSE为0.963 8、RSD为2.15%。以上结果说明近红外光谱技术能够实现大豆原油中含磷量的快速、精准、无损检测,为后续精炼工段及调控提供切实可行的方法。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2