领学术科研之先,创食品科技之新
—— 中国食品杂志社
期刊集群
霉变玉米中玉米赤霉烯酮和黄曲霉毒素B1含量电子鼻检测模型的构建
来源:食品科学网 阅读量: 124 发表时间: 2017-06-07
作者: 于慧春,彭盼盼,殷 勇
关键词: 电子鼻;玉米赤霉烯酮;黄曲霉毒素B1;偏最小二乘回归;BP神经网络;最小二乘支持向量机?
摘要:

为建立霉变玉米中玉米赤霉烯酮和黄曲霉毒素B1的电子鼻检测方法,首先以电子鼻对7 级不同霉变程度玉米响应信号的积分值作为特征参量,然后分别利用主成分回归、偏最小二乘回归、BP(back-propagation)神经网络、最小二乘支持向量机等方法建立霉变玉米中玉米赤霉烯酮与黄曲霉毒素B1含量的预测模型,并进行了比较分析。结果表明,主成分回归预测精度最差,偏最小二乘回归较差、BP神经网络和最小二乘支持向量机法比较好。对于玉米赤霉烯酮,4 种预测模型70 个样本中相对误差控制在5%以内的样本数分别为23、45、63、67 个。对于黄曲霉毒素B1,4 种预测模型70 个样本中相对误差控制在5%以内的样本数分别为19、41、62、65 个。同时,变换不同的训练集和测试集以考察BP神经网络、最小二乘支持向量机建模方法的稳健性,结果表明,在BP神经网络结构和最小二乘支持向量机核函数与核函数参数均未发生改变的条件下,两种建模方法依然有较高的预测精度,这说明了两种模型具有较高的稳健性。

电话: 010-87293157 地址: 北京市丰台区洋桥70号

版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2