为建立霉变玉米中玉米赤霉烯酮和黄曲霉毒素B1的电子鼻检测方法,首先以电子鼻对7 级不同霉变程度玉米响应信号的积分值作为特征参量,然后分别利用主成分回归、偏最小二乘回归、BP(back-propagation)神经网络、最小二乘支持向量机等方法建立霉变玉米中玉米赤霉烯酮与黄曲霉毒素B1含量的预测模型,并进行了比较分析。结果表明,主成分回归预测精度最差,偏最小二乘回归较差、BP神经网络和最小二乘支持向量机法比较好。对于玉米赤霉烯酮,4 种预测模型70 个样本中相对误差控制在5%以内的样本数分别为23、45、63、67 个。对于黄曲霉毒素B1,4 种预测模型70 个样本中相对误差控制在5%以内的样本数分别为19、41、62、65 个。同时,变换不同的训练集和测试集以考察BP神经网络、最小二乘支持向量机建模方法的稳健性,结果表明,在BP神经网络结构和最小二乘支持向量机核函数与核函数参数均未发生改变的条件下,两种建模方法依然有较高的预测精度,这说明了两种模型具有较高的稳健性。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2