模拟退火算法(simulated annealing algorithm,SAA)是一种随机搜索、全局优化算法,为提高近红外光谱检测面粉品质模型的准确度与稳健性,实验提出基于SAA优化波长,再结合偏最小二乘(partial least squares,PLS)法建模预测的定量模型,并对SAA中冷却进度表参数设置进行对比分析。实验依据面粉中灰分含量梯度,随机选取126 份样本的近红外光谱建立SAA-PLS模型。结果发现,SAA从2 074 个波数优选出70 个波数,结合PLS建立的定量模型相关系数为0.976 0,交互验证均方根误差(root mean square error of cross validation,RMSECV)为0.022,预测均方根误差(root mean square error of prediction,RMSEP)为0.030 1,全谱建立的PLS模型相关系数为0.778 5,RMSECV为0.066 6,RMSEP为0.076 8。结果表明,基于SAA优化特征谱区,建立灰分定量模型是可行的,且准确度与稳健性明显优于全谱定量分析模型。
2023年第44卷 2022年第43卷 2021年第42卷 2020年第41卷 2019年第40卷 2018年第39卷 2017年第38卷 2016年第37卷 2015年第36卷 2014年第35卷 2013年第34卷 2012年第33卷 2011年第32卷 2010年第31卷 2009年第30卷 2008年第29卷 2007年第28卷 2006年第27卷 2005年第26卷 2004年第25卷 2003年第24卷 2002年第23卷 2001年第22卷 2000年第21卷 1999年第20卷 1998年第19卷 1997年第18卷 1996年第17卷 1995年第16卷 1994年第15卷 1993年第14卷 1992年第13卷 1991年第12卷 1990年第11卷 1989年第10卷 1988年第09卷 1987年第08卷 1986年第07卷 1985年第06卷 1984年第05卷 1983年第04卷 1982年第03卷 1981年第02卷 1980年第01卷
电话: 010-87293157
地址: 北京市丰台区洋桥70号
版权所有 @ 2023 中国食品杂志社 京公网安备11010602060050号 京ICP备14033398号-2